

Si APD Preamplifier Module

CMC Electronics' 264-339829 series uses a Silicon APD with a built-in preamplifier, enabling optimum signal-to-noise performance.

The APD is coupled to a GaAs FET input trans-impedance amplifier in a 12-lead TO-8 package. The amplifier has an overload input protection circuit which sustains high optical power exposure with a very fast recovery time (-001).

The internal temperature can be monitored via an embedded thermal sensor located close to the APD. The module has a $10\ \Omega$ output impedance and can be AC- or DC-coupled.

Customizations such as bandwidth selection, NEP screening, responsivity optimization and packaging are available upon request.

Features

- 500 μm Silicon APD
- 60 – 100 MHz Preamplifier Module
- Spectral Response: 550 – 1100 nm
- Low Noise Equivalent Power (NEP)
- Overload Input Protection circuit
- Hermetically Sealed TO-8 Package
- ROHS compliant
- ITAR free

Applications

- Laser Range Finding
- LiDAR
- Instrumentation
- Laser Profiling
- Industrial
- Photometry

Table 1. Electro-Optical Characteristics

Unless otherwise specified: $T_A = 25^\circ\text{C}$, $V+ = 5\text{ V}$, $V- = -5\text{ V}$, $R_L = 100\ \Omega$, $\lambda = 1064\text{ nm} \pm 10\text{ nm}$
(Externally AC coupled through $4.7\ \mu\text{F}$)

Parameter	Min.	Typ.	Max.	Units
Active area		500		μm
Operating Voltage (Note 1)	150	225	300	V
Temperature coefficient of V_{OP}		0.6	1.5	$\text{V}/^\circ\text{C}$
ADP dark current		7	50	nA
Responsivity	1000			kV/W
Noise equivalent power (Note 2)				
1064 nm [$T_{case} = 25^\circ\text{C}$]		100	120	$\text{fW}/\sqrt{\text{Hz}}$
1064 nm [$T_{case} = 70^\circ\text{C}$]		220	475	$\text{fW}/\sqrt{\text{Hz}}$
Output impedance		10		Ω
Bandwidth	60	80		MHz
Rise time (10-90%)		6		ns
Fall time (90-10%)		6		ns
Linear output voltage swing (Pulse)	1.5	2.5	4.0	V
Output offset voltage	-0.75	-0.45	0	V
Thermal sensor (1N914 diode) (Note 2)				
I_f of 5 mA at 25°C		645		mV
Sensor sensitivity		-1.9		$\text{mV}/^\circ\text{C}$
Overload recovery for optical power input signal of 1 mW, 20 ns pulse width:				
$V_{out} \rightarrow 200\text{ ns}$ after pulse start			300	mV
$V_{out} \rightarrow 1\ \mu\text{s}$ after pulse start			20	mV
Hybrid Supply current	V_{POS} (pin 10)	25	30	mA
	V_{NEG} (pin 11)	-20	-15	mA

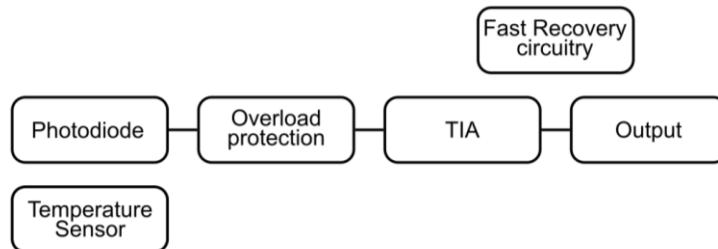
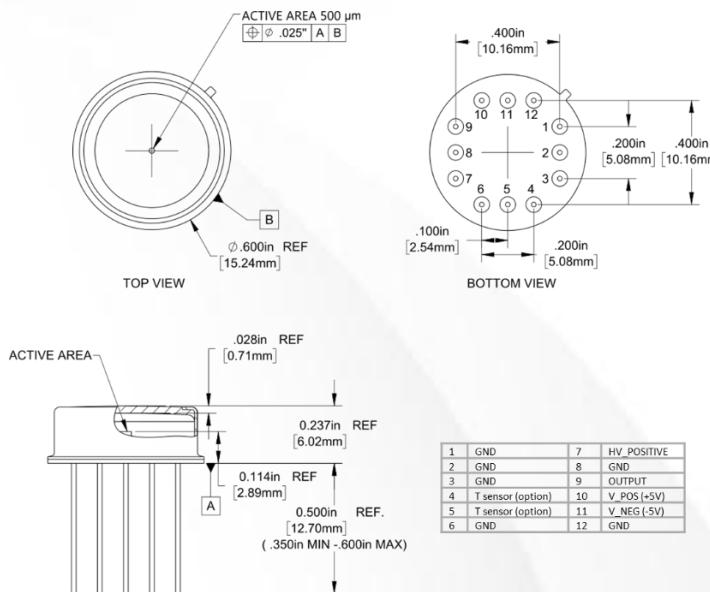

Notes: 1. Each APD receivers will have its individual V_{OP} (provided on its production tests report).
2. NEP values for $+85^\circ\text{C}$ are by design and are for reference only. No test values provided on individual test reports.
Integration of the noise calculation is based on minimum bandwidth.

Table 2. Absolute-Maximum Ratings, Limiting Values


Parameter	Min.	Max.	Units
APD breakdown, Maximum voltage [HV_{POS} (pin7)] (Note 1)		450	V
Recommended overcurrent limit		100	μA
Input Voltage Positive Supply [V_{POS} (+5V) (pin10)] (Note 2)	+4.8	+6.0	V
Input Voltage Negative Supply [V_{NEG} (-5V) (pin11)] (Note 2)	-4.8	-6.0	V
Maximum Optical Power, $M = 100$		300	μW
Maximum Optical Power, $M = 1$		30	mW
Operating Temperature	-20	70	$^\circ\text{C}$
Storage Temperature	-55	125	$^\circ\text{C}$

Note: 1. Absolute maximum over the product Temperature Operating Range (-40°C to $+85^\circ\text{C}$).
2. Assuming light spreads uniformly over APD's active area.

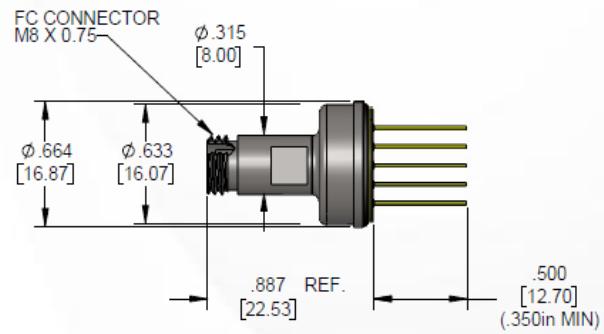

Figure 1. CMC 264-339829 Series block diagram

Figure 2. Package Dimension and Pinout

Figure 3. FC connector (617-339829)

Unless otherwise specified, dimensions are in inches [mm] and are for reference only.

VAR Options

VAR

264-339829-VAR

-001

Silicon APD, 500 μm, 60-100 MHz TIA

For more information, visit www.cmcelectronics.ca/optoelectronics
or email us at opto@cmcelectronics.ca

For information purposes only. To accommodate product improvements, specifications are subject to change without notice.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED
264-339829-VAR | Datasheet REV 01.2026